CN:36-1239/TH

ISSN:1672-3872

半月刊

JST日本科学技术振新机构数据库(日)(2024)

中文核心期刊(遴选)数据库收录期刊

中文科技期刊数据库收录期刊

中国学术期刊(光盘版)全文收录期刊

中国期刊网收录期刊

中国学术期刊综合评价数据库 统计源期刊

搜索
搜索
这是描述信息

基于深度学习的群猪分割方法

访问量:

DOI:10.3969/j.issn.1672-3872.2023.18.002

基金项目:江西省畜牧设施技术开发工程研究中心专项基金(赣发改高技〔2019〕277号)

作者:孙云涛,何秀文,黄巍,彭兴鹏,罗世林,刘仁鑫(江西农业大学工学院,江西 南昌 330045)

 

摘 要:【目的】实时监控猪舍内猪只状态以及在出栏前对猪只进行计数满足“动物福利化”养殖需求,而实现实时监控与计数的前提条件之一是对图像进行分割。【方法】图像分割方式有传统阈值分割以及引入深度学习概念的语义分割和实例分割。课题组介绍了语义分割的DeepLab V3+模型,作为语义分割中较晚出现的模型,DeepLab V3+模型在分割精度上相较于之前的模型有了巨大的提升,但分割速度仍较慢,无法满足实时监控的需求。基于此,课题组提出用Mobilenet V2主干网络替代原有Xception网络来改进模型,并引入了通道注意力机制以及空间注意力机制,然后分别利用原始模型和改进后的模型进行了试验。【结果】在精度上,改进后的V2模型稍弱于原始模型,加入注意力机制后的模型又优于V2模型0.48%而弱于原始模型2.97%,但在响应速度上,改进后的模型速度提升了38.77%。在分割效果上,三个模型的差异不大。【结论】相较于原始模型,改进后的模型精度略有下降,但是响应速度大幅提升,从而大大提高了模型分割的速度,满足了猪舍监控分割速度快的需求。

关键词:深度学习;群猪分割;“动物福利化”;DeepLab V3+;注意力机制

 

引文信息 [1]孙云涛,何秀文,黄巍,等.基于深度学习的群猪分割方法[J].南方农机,2023,54(18):6-9.

查看全文请下载PDF文件↓

相关下载

分类:
2023年
文件大小:
1.7M
2023-09-28 09:27:57
所属人群:
所有人
上一页
1
底部logo

公众号

地       址:江西省南昌市红谷滩红谷中大道1326号江报传媒大厦908室

联系电话:0791-86202556

投稿邮箱:nfnj@vip.163.com

版权所有:江西南方农机杂志社有限责任公司.  All rights reserved.   SEO     赣ICP备2023003226号-1       技术支持:中企动力-南昌