CN:36-1239/TH

ISSN:1672-3872

半月刊

JST日本科学技术振新机构数据库(日)(2025)

中文核心期刊(遴选)数据库收录期刊

中文科技期刊数据库收录期刊

中国学术期刊(光盘版)全文收录期刊

中国期刊网收录期刊

中国学术期刊综合评价数据库 统计源期刊

搜索
搜索
这是描述信息

基于改进 YOLOv5s 的麦穗检测算法研究

阅读量:100

DOI:10.3969/j.issn.1672-3872.2023.23.017

作者:刘志军(江西理工大学信息工程学院,江西 赣州 341099)

 

摘 要:【目的】解决麦穗检测中麦穗之间相互遮挡、麦穗在图像中难以检测和不同环境造成目标模糊等情况导致麦穗检测精度低的问题。【方法】笔者提出一种基于改进YOLOv5s的算法,通过将数据集同时进行离线增强和在线增强,再将YOLOv5s 的骨干网络进行改进,增添具有注意力机制的transformer模块,强化主干网络的全局特征信息提取能力,neck结构由原来的 PAFPN改为具有双向加强融合的BiFPN特征融合网络,进行多尺度的特征融合。最后,在head部分使用EIoU-NMS来替代 NMS,提高对遮挡麦穗的识别度。【结果】相比于其他改进单一结构的YOLOv5s模型,此综合性改进模型具有更好的检测效果,使mAP@0.5:0.95提高了1.4%,改进的算法比原始YOLOv5s算法的mAP@0.5提高了1.8%。【结论】使用离线增强和在线增强的方式可以使模型的精度有所提升;该模型的改进有效增强了麦穗识别过程中特征融合的效率,提高了麦穗检测的效果,能够为后续相关模型的改进升级提供参考。

关键词:YOLOv5s;麦穗检测;数据增强;EIoU-NMS

 

引文信息:[1]刘志军.基于改进YOLOv5s的麦穗检测算法研究[J].南方农机,2023,54(23):68-73.

查看全文请下载PDF文件↓

相关下载

分类:
2023年
文件大小:
2.2M
2023-12-21 17:25:25
所属人群:
所有人
上一页
1
底部logo

公众号

地       址:江西省南昌市红谷滩红谷中大道1326号江报传媒大厦908室

联系电话:0791-86202556

投稿邮箱:nfnj@vip.163.com

版权所有:江西南方农机杂志社有限责任公司.  All rights reserved.   SEO     赣ICP备2023003226号-1       技术支持:中企动力-南昌