DOI:10.3969/j.issn.1672-3872.2024.01.011
作者:庄丽丽(浙江农林大学数学与计算机科学学院,浙江 杭州 310000)
摘 要:【目的】分析预测土壤墒情变化趋势,总结影响土壤墒情的因素,为土壤改良提供参考。【方法】通过对不同深度土壤墒情随时间呈现的动态变化进行研究,针对研究区的具体气象条件和土壤情况,应用时间序列模型和深度学习方法,探究BAG土壤墒情预测模型的预测性能。通过对土壤深度、数据和环境因子与预测模型的相关关系的分析,证明该模型的预测精度。【结果】1)深度与预测性能的关联:研究区内不同深度的土壤含水量预测误差的平均绝对值都较为平稳,均在1%以下,不同深度的土壤含水量不会直接影响BAG的预测性能。2)墒情数据对预测模型的影响:研究区内1 095条、729条和364条数据作为输入数据进行预测,序列长度为364时,各个深度预测精度较好。3)环境因子对预测模型的影响:预测精度并不随着相关性的强弱而相应变化,阈值为0.3以上的环境因子预测精度最好。【结论】在一定的序列长度和环境因子数量下,BAG的预测性能较高。
关键词:土壤墒情预测;BAG模型;环境因子;时间序列模型
引文信息:[1]庄丽丽.基于时间序列的土壤墒情预测影响因素研究[J].南方农机,2024,55(1):38-42+61.
查看全文请下载PDF文件↓