CN:36-1239/TH

ISSN:1672-3872

半月刊

JST日本科学技术振新机构数据库(日)(2025)

中文核心期刊(遴选)数据库收录期刊

中文科技期刊数据库收录期刊

中国学术期刊(光盘版)全文收录期刊

中国期刊网收录期刊

中国学术期刊综合评价数据库 统计源期刊

搜索
搜索
这是描述信息

基于融合邻域规则的双尺度拓扑优化新方法

阅读量:100

DOI:10.3969/j.issn.1672-3872.2025.03.037

作  者:王 震(长安大学工程机械学院,陕西 西安 710064)

 

摘 要:【目的】开发一种创新的双尺度拓扑优化策略,应用于结构设计与优化研究。【方法】结合混合元胞自动机(HCA)与双向渐进法(BESO),推出HCA-BESO拓扑优化方法,其核心创新点在于采用HCA的邻域规则替代传统基于距离的加权处理机制,简化了灵敏度过滤规则,并引入了多样的邻域组合形式。【结果】通过引入HCA,该方法在双尺度优化方面显著提升了性能,减少了迭代次数,相比传统BESO算法,能够创建出刚度更高的结构。【结论】HCA-BESO方法代表了双尺度拓扑优化研究的一个重大进步,为未来的结构设计与优化研究开辟了新的路径。

关键词:双尺度优化;双向渐进法(BESO);混合元胞自动机(HCA);灵敏度过滤

 

A New Method of Dual-Scale Topology Optimization Based on Fusion of Neighborhood Rules

Author: Wang Zhen (School of Construction Machinery, Chang’an University, Xi’an 710064, China)

 

Abstract: [Objective] To develop an innovative two-scale topology optimization strategy for structural design and optimization. [Method] The HCA-BESO topology optimization method was proposed by combining the bi-directional asymptotic method (BESO) and hybrid cellular automata (HCA). The core of the hca-beso topology optimization method was to replace the traditional weighted processing mechanism based on distance with the neighborhood rules of HCA, simplify the sensitivity filtering rules, and introduce a variety of neighborhood combinations. [Result] By introducing HCA, the method can significantly improve the performance in two-scale optimization and reduce the number of iterations. Compared with the traditional BESO algorithm, it can create a structure with higher stiffness. [Conclusion] The HCA-BESO method represents a significant progress in the research of two-scale topology optimization, and opens up a new path for the future research of structural design and optimization.

Keywords: dual-scale optimization; Bi-directional Evolutionary Structural Optimization (BESO); Hybrid Cellular Automata (HCA); sensitivity filtering

 

引文信息:[1]王震.基于融合邻域规则的双尺度拓扑优化新方法[J].南方农机,2025,56(3):147-149+159.

查看全文请下载PDF文件↓

相关下载

分类:
2025年
文件大小:
4.6M
2025-03-25 16:50:16
所属人群:
所有人
上一页
1
底部logo

公众号

地       址:江西省南昌市红谷滩红谷中大道1326号江报传媒大厦908室

联系电话:0791-86202556

投稿邮箱:nfnj@vip.163.com

版权所有:江西南方农机杂志社有限责任公司.  All rights reserved.   SEO     赣ICP备2023003226号-1       技术支持:中企动力-南昌